1 Introduction

Generative Adversarial Networks (GANs) have become fertile tools for artistic exploration. Artists such as Refik Anadol, Robbie Barrat, Sofia Crespo, Mario Klingemann, Jason Salavon, Helena Sarin, and Mike Tyka generate fascinating imagery with models learned from natural imagery. These artists work in very different ways, but each has produced some work that shares a common GAN aesthetic: realistic, but unrecognizable.

Why are GANs such powerful tools for making art? This essay argues that GAN art often exhibits visual indeterminacy, a term coined by Pepperell [16]. GANs cause visual indeterminacy by creating plausible compositions and textures that nonetheless defy coherent explanation, and these are the GAN images often used in recent artworks. Because visual indeterminacy can be understood as a perceptual process [12], GANs provide a potential tool for both art and for neuroscience experiments based on perceptual uncertainty modeling.

2 Visual Indeterminacy and Aesthetic Experience

Often, the initial appearance of an image invites the viewer to investigate further, but the image confounds explanation. For some images, this investigation leads to an “Aha!” moment, where the viewer understands the structure of an image [13], e.g., they see a vivid 3D object where there had been abstract 2D shapes. This moment is pleasurable because the posterior distribution collapses: some understanding has been gained. But the image may also become less interesting as result. “Visual indeterminacy” describes images where the “Aha!” moment never happens, and the image continues to invite investigation.

In short, visual indeterminacy occurs in a “seemingly meaningful visual stimulus that denies easy or immediate identification” [17]; it is the “lack but promise of semantic stability” [12]. Ambiguity has been present in art since cave painting, but became particularly valued in the Modern art era [7]. Many recent studies connect these ideas to perceptual theory and neuroscience; see [12, 21] for reviews, and [9] for a discussion of visual ambiguity in terms of perceptual posterior probability.

3 Generating Visual Indeterminacy

Some GAN images are naturalistic; some look like unusual but realistic scenes, e.g., portions of Refik Anadol’s “Machine Hallucinations,” Mike Tyka “EONS,” and Figure 1(left). Some images of humans or animals seem real and grotesque, like portions of Mario Klingemann’s “Memories of Passersby I.” But a dominant mode of GAN art is visual indeterminacy. It looks like there is a real scene being depicted in photorealistic detail, but what is it?

GANs seem predisposed to indeterminate, intriguing imagery. This can be seen by experimenting with Artbreeder [19] (Figure 1), formerly Ganbreeder. Images drawn from Ganbreeder have been exhibited as art [11].
Figure 1: Images from BigGAN [3] created with Ganbreeder (now called Artbreeder) [19]. The
leftmost image is, basically, naturalistic. The other images are visually indeterminate: they appear
realistic at first glance, and suggest various associations, but they do not yield coherent realistic
interpretations on closer study. Image credits in the Appendix.

Why do GANs create indeterminate images so often? Recent results by Bau et al. [2] suggest that
early GAN layers correspond to large-scale objects, and later layers capture fine-scale details and
textures. This suggests that they construct scenes in pictorial space, first arranging “objects” into
compositions, and then placing appropriate textures and details for those objects. Sometimes GANs
compose textures in unexpected arrangements, composing realistic parts from familiar types of
objects, in unfamiliar combinations. This produces visual indeterminacy. The images are most
intriguing when they place familiar-looking elements into evocative but indeterminate configurations
that, seemingly, no one would have created without these tools.

As a neural explanation for visual indeterminacy, Muth and Carbon [12] suggest that multiple local
neural predictions fail to converge to a coherent interpretation. They quote Gombrich, who wrote
about Cubism, “each hypothesis we assume will be knocked out by a contradiction elsewhere” [8].

Intriguingly, some of the paintings that Pepperell created years ago in search of visual indeterminacy
[17] appear quite similar to GAN images. As a very unscientific experiment, I showed two of these
paintings (Figure 2) to some colleagues, and asked “Can you guess how these images were made?”
Four of the five responses hypothesized some kind of neural networks.

Eventually, generative networks may get so good that they rarely, if ever, produce unrealistic images.
Perhaps there is an “Uncanny Ridge,” along which generators are only just good enough to produce a
diverse set of intriguingly indeterminate images, and past which the outputs are less and less surreal.
Once generators pass this Uncanny Ridge, artists will need to find new ways to “break” the models,
to coerce them into making new “errors.”

4 Unifying Perception and Aesthetics

Natural image models, vision neuroscience, and image synthesis have long been tightly-coupled
fields. Discoveries about the visual cortex [11] led to natural image statistics analysis [15, 20], which
led to texture synthesis algorithms [5, 18] which led to style transfer algorithms [4, 10]. At the same
time, cortical modeling also led to deep convolution networks [6], which led to GANs and trained
discriminative networks, which, in turn, have led to improved neuroscience models [22]. Can aspects
of aesthetic experience be understood with the same models?

Ideally, a generator would accurately represent a distribution over natural images; a recognition
model would be the inverse, a providing a posterior distribution over interpretations that would
approximate human perceptual uncertainty. Optimization against this model would give artists more
precise control over the type of perceptual uncertainty present in images, for example, to produce
images with specific types of visual indeterminacy.

This would provide artists with higher-level controls to explore artistic creation. It could also provide
a richer testbed to develop perceptual theories of aesthetic experience, rather than using hand-crafted
artworks as in [13, 17].

A more fine-grained neural model of indeterminacy is needed, to account for the temporal evolution
from first impressions [14], to the movement of attention, to the possibility of the “Aha!” moment.
Moreover, the categorization of perceptual ambiguity in art is very preliminary and much work
remains to be done to expand upon and refine it.
References

A Image Credits

Figure 1 images are from Ganbreeder, CC-BY-A. Sources and authors (left to right in Figure):

- 16f4b2755812af1813ce425d: aaron, hypr
- 53f9de9c7991c9423769ad4b: caincaser
- d886fa8b07505822486e969f: guidohelme
- e24d454191e0dd9e76097191: jeffgiddens
- 660407466bddd43a49a66588: suddenwoven, jasongraf

B Supplemental Figure

![Succulus (2005)](image1.png) ![The Flight (2007)](image2.png)

Figure 2: Paintings by Robert Pepperell, created with the goal of visual indeterminacy, taken from [17].