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Abstract

Immersions is a system that visualizes and sonifies the inner workings of a sound
processing neural network in real-time. An optimization procedure generates
sounds that activate certain regions in the network. This renders audible the way
music sounds to this artificial ear. In addition the activations of the neurons at each
point in time are visualized, creating the experience of immersing oneself into the
depths of an artificial intelligence.

1 Introduction

Although neural networks are often described as black boxes, there exist methods to make us see and
hear what is going on inside a neural networks. A well known example of this is the DeepDream
technique [1] that generates bizarre psychedelic but strangely familiar pictures. We follow a related
approach to make audible the innards of sound processing neural nets.

The basic idea is the following: You start with an arbitrary sound clip (e.g. a drum loop). This clip
will be modified by optimization procedure in way that stimulates a certain region in the neural net.
The changed clip can then be used as a basis for a new optimization. This way you obtain sounds that
are generated by the neural network in a freely associative way.

One of the most important properties of neural networks is that they process information on different
levels of abstraction. An activation in some region of the net thus may for example be associated
with short and simple sounds or noises, a different region with a more complex musical phenomenon,
such as rhythm, phrase or key. For what exactly a neural networks listens depends on the data it was
trained on, as well as on the task it is specialized to accomplish. This means to different nets music
will sound differently. All this can be directly experienced with the Immersions project. For this I
developed a setup that allows - not unlike a DJ mixing console - the generation, visualization and
control of sound in real-time.

2 Technical Concepts

2.1 Contrastive Predictive Coding

In the center of this project stands an "artificial ear", meaning a sound processing neural network.
It has been shown that analogies exist between convolutional neural networks (ConvNets) and the
human auditory cortex [2]. Of course the human auditory system is not a classification network,
as the used used in [2], we usually don’t learn with the help of explicit labels. The question of the
actual learning mechanisms in the brain is highly contested, but a promising candidate, especially
for perceptual learning, might be predictive coding [3, 4]. Here future stimuli are predicted and then
compared to the actual occurred stimuli. The learning entails reducing the discrepancy between
prediction and reality.
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One method of using the idea of predictive coding for unsupervised learning in artificial neural
networks is presented in [5] and [6]. For this so-called contrastive predictive coding you need two
nets: The encoder net builds a compressed encoding zt of the signal for each time step t and the
autoregressive net summarizes multiple sequential encodings into a vector c. The encoding k time
steps in the future, zt+k, is predicted by a different learnt linear transformation Mk of c for each
time step. The loss for each mini-batch is calculated as follows:

LCPC = −
∑
n,k

log
exp(zTn,kMkcn)∑
m exp(zTm,kMkcn)

Both n and m index the mini-batch dimension. For details on the model architecture used here, please
see Figure 2 and appendix A.

For contrastive predictive coding no expensively labeled datasets are required, the model learns to
make sense of any inputs it is given. The models for this project were trained on datasets consisting
of about 40 hours of house music mixes or 200 hours of classical piano music.

2.2 Visualization

To illustrate what is going on inside the model at each moment we visualize the activation of the
artificial neurons. The time dimension is retained, resulting in animated pictures. The neurons have
to be arranged in a 2D layout according to their position in the network (given by layer, channel and
pitch). The neurons are connected with one another according to different patterns depending on the
type of layer (e.g. fully connected or convolutional). This leads to a graph layout problem.

To find a layout for a graph of this size (tens of thousands vertices and many millions connections)
a multilevel force layout method [7, 8] is suited. Here the graph is modeled as a physical system,
where the vertices repel each other as if electrically charged with the same polarity, and edges act like
rubber bands pulling connected vertices together. To avoid local energy minima we start with few
vertices and gradually add more until the layout of the complete graph is calculated. Details on the
procedure can be found in appendix B.

Once the layout is worked out the current state of the net can be depicted by lighting up strongly
activated neurons and letting others stay dark (see Figure 1).

2.3 Input Optimization

Today’s neural networks usually are completely differentiable. This means we can generate inputs for
a trained model that maximize the activations of certain neurons in the network using gradient based
optimization [9, 1, 10]. These inputs can then be directly experienced by humans and show which
particular stimuli the selected neurons respond to.

Neural nets, especially if they did not receive adversarial training [11], are susceptible to small
changes in the input. These can lead to local optima that are not perceptible by humans but still have
the required properties. To prevent this we apply several types of regularization: temporal shifting
of the input, small pitch changes, masking of random regions in the scalogram, noisy gradients and
de-noising of the input. All these methods make the input optimization more difficult in certain ways
and thus enforce more robust and distinct results.

3 Live Performance

The generated audio clips have a duration of about four seconds. With that they lend themselves for a
loop based live performance. One loop then corresponds for example to two 4/4 measures at 120 bpm.
The optimization procedure described above constantly generates new audio clips. As soon as one
clip has finished playing, the latest newly calculated clip is started, resulting in an acoustic morphing.

All aspects of the procedure can be adjusted in real-time. For intuitive control I developed a GUI and
made the most important parameters controllable by a MIDI controller. The setup described here is
very flexible, other networks trained on different data or with different architectures can easily be
employed.
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4 Ethical Implication

Neural networks might be the artificial systems that come yet closest to our own ways of thinking
and perceiving. This work tries tries to explore this area between familiarity and strangeness. The
visualization in a way anthropomorphizes, or at least biologizes, the results of calculations (the
emerging shapes, although completely determined by the network architecture, could remind one
of a micro-organism or a brain in a jar). You might argue that this paints a wrong and maybe even
dangerous picture, buying into the current hype or promoting overconfidence in these kind of novel
systems. My hope however is that this work rather invites people to think critically about the results
they see and hear. We are all fascinated by neural networks not without a reason. I don’t think we
have even begun exhaust the many ways to examine them and gain a deeper understanding.

For further material, demos and code, please see https://vincentherrmann.github.io/demos/
immersions

Figure 1: Activation visualization of the model trained on house music
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A Network Architecture

The encoder network receives as input the scalogram of a roughly four second long audio clip. A scalogram
is the result of a constant-Q or a wavelet transformation [12] of the audio signal and comes quite close to
the representation that the cochlea passes on to the brain (see [2]). Since it is a 2D representation (with the
dimensions time and frequency) we can use a conventional 2D-ConvNet of the kind common in the computer
vision and image processing.

As encoder we use a modified ResNet [13] with ReLu nonlinearities, max pooling and batch normalization. In
addition to the usual quadratic kernels we also apply kernels that only span the pitch dimension and are supposed
to detect overtones and harmonies (see Table 1). The autoregressive model is a ResNet as well, but with 1D
convolutions (Table 2).
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Figure 2: Model architecture
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Block Channels Conv 1 Conv 2

0 8 3x3 pool 2 1x25
1 16 3x3 3x3
2 32 3x3 1x25
3 64 3x3 3x3
4 128 3x3 pool 2 1x25
5 256 3x3 3x3
6 512 3x3 1x4
7 512 3x3 3x3

Table 1: Encoder

Block Channels Conv

0 512 5
1 512 4
2 512 1 pool 2
3 512 3
4 256 3
5 256 1 pool 2
6 256 3
7 256 1
8 256 6

Table 2: Autoregressive Model

Figure 3: Activation visualization of the model with each layer in a different color

B Neural Layouts

The coarse graph levels for the layout calculation presented in 2.2 are achieved by iteratively merging two
vertices into one with the combined weight. First we merge neighbouring vertices in the channel dimension,
then in the pitch dimension. During the layout calculation the higher resolution graphs are reconstructed in the
reverse order. When calculating the layout for a trained neural network, I used the variance of each activation
over the validation set as the vertex weight.

Since in a force layout each vertex interacts with every other one, to keep the computational load acceptable a
Barnes-Hut tree approximation [14] has to be used in order to reduce the computational complexity. For GPU
acceleration and easy integration into the software existing ecosystem I implemented the graph layout algorithm
in PyTorch. The code is available at https://vincentherrmann.github.io/demos/immersions.
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This visualization method is very flexible and can be used for various neural network architectures. While it
is possible to calculate a layout for a complete 2D convolutional network, in a 2D visualization setting the
results are overcrowded an thus not very insightful. Because of that we stick with cuts through one of the spatial
dimensions for the VGG [15] and ResNet [13] architectures shown in Figures 5 and 6.

Figure 4: Four steps of the layout calculation for the model architecture used in this paper

Figure 5: Four steps of the layout calculation for a VGG16 architecture

Figure 6: Four steps of the layout calculation for a ResNet18
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