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Abstract

We present our initial research on creating an application that gives users the
opportunity to compose poetry in collaboration with an AI. Our goal is to allow
for a user to have full control of the flow of the poem. When composing the poem,
the application will provide multiple suggestions for the next possible verse given
the previous verse, which the user may then use or write one of their own. This
differs from many other generative approaches that have been more focused on
generating poems with little to no user interaction. In this paper, we will explain
how the verses are generated and how the application determines which generated
verses to suggest as next possible verses.

1 Introduction

We are interested in creating a tool that empowers those interested in poetry to compose a poem in
collaboration with an AI. When composing a poem, we want to offer suggestions to a user of possible
next verses, and then allow the user to choose which verse they feel like best continues the poem or
to write their own. Even when writing their own verse, they may be inspired by the suggested verses.

Many past approaches have focused on generating a poem in full with minimal user interaction [3].
Hafez [1, 2] has been one approach though that has allowed for some human interaction. While it
did not allow for users to pick or write verses, it did offer a variety of inputs for users to dictate how
a poem was generated (e.g., topic; desired words; control for sentiment, alliteration, etc.). Users
could then further tweak the controls until a poem was generated to their liking. Also relevant is
DopeLearning [6], an interactive approach for generating rap lyrics. It allowed finer interaction for
composing a rap song – for each verse, a user could either enter their own input or pick from a list of
existing rap lyrics that are ranked given the previous verse.

In this paper, we will give a brief overview of our system – how the verses are generated, how we
determine which verses to suggest to the user, and discussions on future work.

2 Approach

As a high-level overview, a user begins to compose a poem with the AI by writing the first line of
verse. Following this, we then allow a user to either write the next verse, choose from a list of AI
suggestions, or edit one of the AI suggestions. The suggestions are influenced by the previous verse
and the structure of the poem that the user is making (e.g., number of syllables, rhyming schema).

2.1 Generation

For generation, verses are generated offline and stored for later serving. Offline generation allows us
to suggest verses to a user quickly, with more detail in Section 2.2.
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Cats playing in the light of the moon, (Human)
The sound of my life, my soul in tune, (AI)

As music flows through the dying night, (Human)
There is a song to the morning light. (AI)

I see ships in the water, (Human)
Roots in the path of the sea, (AI)

Batman riding a dolphin up high, (Human)
Mad in the path of the scene of life. (AI)

Figure 1: Two example poems composed with our application. The first uses an AABB rhyme
schema with 9 syllable count while the second is without restriction on rhyme or syllable count.

To begin with, for source material we use the poems of classical American poets (e.g., Walt Whitman,
Emily Dickinson), with most material found on Gutenberg1. These original verses are broken into
trigrams and grouped into three sets – starting trigrams marking the start of a verse; ending trigrams
marking the end of a verse; and middle trigrams composed of trigrams that come in between. We then
create all possible permutations for a given poet – we start with the starting trigrams, find all possible
middle trigrams that overlap by two tokens, and iterate until we find ending trigrams that overlap
with the partially-constructed verse. All generated verses are novel – we check that no generated
verses are found in the original corpus.

As we are using trigrams for generation, many generated verses suffer from poor grammar or are
nonsensical. To overcome this, following the generation of all feasible verses, we train classifiers
to remove many of these poorly-constructed verses. The classifiers are trained per-poet (to help
capture their writing style), using a poet’s original verses as “good” verses and a random sampling
of generated verses as “poor” verses. This helps filter out a substantial number of poorly-generated
verses.

2.2 Recommendation

As mentioned earlier, we want to suggest to the user multiple verses given the previous verse. To do
so, we use a dual encoder model to recommend the next possible suggestions. This is similar to the
model used in Gmail’s Smart Reply [5]. In our dual encoder model, one encoder is used to encode a
parent (previous) verse and the other encoder is used to encode a child (next) verse. The model is
then trained to optimize the dot product similarity between the current verse and all possible next
verse within a batch. For training data, we use a variety of sources including English poems found in
Gutenberg, modern song lyrics, and Reddit.

After all verses have been generated, they are then encoded with the child encoder of the dual encoder
model, annotated with metadata (such as the rhyming phonemes), and finally indexed. For serving,
we encode the previous verse with the parent encoder and then retrieve the best possible next verses
using a hierarchical quantization approach to search through all possible verses [4, 7].

Our motivation for this approach is to allow us to train the dual encoder model on a large corpus
of data beyond the original poems used for generation. This allows the model to gain a semantic
understanding of a wider variety of subjects.

3 Discussion and Future Work

Figure 1 gives two example of recent poems that we composed in collaboration with our AI. As can
be seen, our initial approach can make poetic verses that respect rhyme and syllable count. More
importantly, it showed some semantic understanding of what verses to suggest next, for example
associating “music” with “song”, “night” with “light”, and “water” with “sea”.

In the future, we plan to explore replacing the trigram concatenation generation with a generative
model. The trigram concatenation generation results in too many poor verses, and has found to be
restrictive when working with poets whose writing style offers few overlapping trigrams. We would
still generate and index offline to allow for faster serving, but we hope that by adopting a generative
model approach that it will lead to better quality and diversity of verses generated.

We also plan to start doing human evaluations. As seen in many recent works on poetry generation,
human evaluation is often needed due to the subjective nature of poetry. We plan to use these
evaluations to both just the quality of the verses themselves along with the ranking of suggestions.

1http://www.gutenberg.org/
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