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Abstract

We investigate using reinforcement learning agents as generative models of images
(Ganin et al., 2018). A generative agent controls a simulated painting environment,
and is trained with rewards provided by a discriminator network simultaneously
trained to assess the realism of the agent’s samples. Compared to prior work, we
make a number of improvements to the architectures of the agents and discrimi-
nators that lead to intriguing and at times surprising results. We find that when
sufficiently constrained, generative agents can learn to produce images with a
degree of visual abstraction, despite having only ever seen real photographs and
no trajectories. And given enough time with the painting environment, they can
produce images with considerable realism. These results show that, under the right
circumstances, some aspects of human drawing can emerge from simulated em-
bodiment, without the need for external supervision, imitation or social cues. See
https://learning-to-paint.github.io for further analysis and videos.
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Figure 1: Despite not seeing examples of human drawings, agents can produce images with a degree
of visual abstraction, in a diverse array of styles, and they can scale to approach realistic results.

Humans have been representing and reconstructing their visual sensations, using physical tools to
draw and sculpt depictions of those sensations, for at least 60,000 years (Hoffmann et al., 2018), well
before the development of symbolic writing systems. And abstraction from raw sensations and use of
tools are thought to be essential components of certain human cognitive abilities (Clark and Chalmers,
1998; Lake et al., 2015, 2017). We set out to create generative models that similarly use physical
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Figure 2: Agents with varying hyper-parameters were trained to generate images (a, b, c) in 17 steps
and (d) in 1000 steps. (e) 19-step agent from Ganin et al. (2018) for comparison.

Figure 3: Agents make good use of hundreds of timesteps, controlling the brush with precision. See
https://learning-to-paint.github.io for videos and further analysis.

grounding. In this work, we equip artificial agents with digital brushes, pens and spray cans. We
train these agents with reinforcement learning to interact with digital painting environments (Renold,
2004; Li, 2017). The agents act by placing strokes on a simulated canvas and changing the brush
size, pressure and colour as they do so. Building on Ganin et al. (2018), we consider a setting where
the agents’ rewards are specified by jointly-trained adversarial discriminator networks. In contrast
to Ganin et al. (2018) we use 1. the non-saturating GAN objective, 2. spectral normalisation in the
discriminator, 3. automatic reward redistribution, 4. a new form of conditioning, 5. a spline-based
version of the action space and 6. a shared population discriminator (see appendix B for full details).

We show highlights of our experiments on Celeba-HQ (Karras et al., 2017) in Figure 1 and Figure 2.
Amongst all the framework’s settings, the one we observed to have the most profound impact on the
agents’ behaviour was the number of times they were allowed to interact with the canvas in each
episode to generate an image. Agents that were constrained with short episodes learned qualitatively
different policies than those that could afford numerous interactions, producing images with a degree
of visual abstraction, not unlike how humans do when similarly constrained (Selim, 2018; Fan
et al., 2019). SPIRAL agents (Ganin et al., 2018) only learn to perform meaningful actions in the
last 20 to 50 steps or so of the episode, regardless of the episode length. However, our improved
SPIRAL++ agents make full use of episodes of up to 1000 steps, leading in turn to qualitatively
different generation policies (Figure 3). See the appendix for extensive experiments and ablations.

To the best of our knowledge, this is the first time that an unsupervised artificial system has discovered
visual abstractions of this kind, abstractions that resemble those made by children and novice
illustrators. And whilst techniques such as GANs (Goodfellow et al., 2014) and style transfer (Gatys
et al., 2015) are increasingly being used for creative investigation in the artistic community, generative
agents have the ability to generate novel aesthetic styles with no human input except for a choice of
brush (see e.g. Figures 25–30 in the appendix), potentially enabling new modes of artistic output. The
extent to which any of these systems can be considered creative is open for discussion (Hertzmann,
2018), however we hope this framework can provide new points for consideration in that debate.
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