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Abstract

We present a character animation system that integrates deep reinforcement learning
into soft body simulation to synthesize locomotion controllers for autonomous
characters modeled as deformable 2D triangle meshes with no rigid components. A
controller in our system is a mapping from state observations (vertex positions and
velocities of the character’s mesh) to actions that contract or relax the character’s
muscles. Our results show that our locomotion controllers can be run from different
initial simulation states and recover from perturbations such as external impulses
generated by unexpectedly poking the character.
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Figure 1: Our trained policies are robust to external perturbations and can be run from different initial
states, which allows us to switch between independently trained policies to transition from horizontal
locomotion to jumping and vice versa. Video available at https://youtu.be/J36MOHfxWYg,

1 Introduction

While common approaches to model physically realistic autonomous agents are based on structures
composed of rigid links and joints, real-world animals are composed of many types of materials
with different degrees of elasticity. The common articulated rigid-body model implies that motion
is achieved by directly operating on joint angles, which serves as an approximation to the internal
structure present in vertebrate animals. However, animal locomotion is achieved by controlling
muscles, which has an indirect effect on joint angles as a result of the physical interactions between
different types of tissue.

We present an approach that integrates deep reinforcement learning into soft body simulation to
optimize controllers for autonomous characters modeled as deformable 2D triangle meshes with no
rigid components that achieve locomotion using a muscle-like actuation mechanism. Our system is
aware of the long-term effects of the actions taken every time step of the simulation and does not
assume prior knowledge of environment dynamics for optimization purposes. This is in contrast to
previous soft-bodied character animation methods which have an effective planning horizon of one
time step and require tight coupling of the dynamics model with the control method using constrained
optimization [1}2]]. Complementary methods based on spacetime optimization [3} 4] optimize a fixed
sequence of actions to achieve a specified motion. In contrast, our system optimizes control policies,
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i.e., functions from simulation state-dependent observations to actions, which results in effective
locomotion controllers that are robust to external perturbations.

2 Simulation

Our animation system uses the finite element method to simulate characters as 2D triangle meshes
with a Neo-hookean-based elasticity model. We also embed controllable springs in the triangle
meshes to generate contractile forces that can be interpreted as muscle contraction or relaxation, and
we implement basic models of friction and collision with the ground to enable terrestrial locomotion.
For numerical integration, we use the variational formulation of backward Euler due to its excellent
stability even with large time steps [15; 16].

3 Policy

Muscles are controlled by a stochastic policy. A neural network maps partial observations of the
environment, represented as vertex positions and velocities of the character’s mesh projected onto a
local frame, to a multivariate Gaussian distribution. An action sampled from the distribution specifies
how to change the rest lengths of the controllable springs and can be interpreted as muscle contraction
(negative values) or relaxation (positive values). To avoid unrealistic motions, we do not allow
muscles to expand beyond their original rest lengths or contract to zero rest length (by imposing an
arbitrary minimum rest length).

4 Training

All our experiments use episodic tasks with a fixed time horizon H where the reward is only delivered
at the end of the episode. One iteration of our training loop runs H time steps of m episodes in
parallel using the policy my, which provides us with training data to improve the policy parameters
0. We use R; to refer to the reward delivered at the end of episode 4, and o;; and a;; to refer to the
observation and action at time step ¢ of episode i. We optimize an objective function based on the
surrogate objective used in proximal policy optimization (PPO) [7]:
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Common implementations of PPO use a value function as a baseline for ¥, which requires training
another neural network to learn a value function. However, we adopted a simpler approach: we use
the average reward of the episodes sampled in the current training iteration as a baseline, which
resulted in significant improvements over not using a baseline at all, while at the same time avoided
the complexities of training an additional neural network:
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For every training iteration, we run 10 iterations of the Adam optimizer [8] with learning rate 103
on the surrogate objective L (Equation[I)) with e = 0.2. To train policies for horizontal locomotion
we used a reward equal to the total horizontal displacement of the agent’s local frame, and to train
jumping policies we used a reward equal to the maximum height reached during the episode. Our
results show that the trained policies are robust to external perturbations and can be run from different
initial states, which allows us to switch between independently trained policies as shown in Figure|T]
See the video demo for additional results (https://youtu.be/J36MOHLxWYg).
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