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Abstract

We propose an unsupervised multi-conditional image generation pipeline: cFine-
GAN, that can generate an image conditioned on two input images such that the
generated image preserves the texture of one and the shape of the other input. To
achieve this goal, we extend upon the recently proposed work of FineGAN [8]
and make use of standard as well as shape-biased pre-trained ImageNet models.
We demonstrate both qualitatively as well as quantitatively the benefit of using
the shape-biased network. We present our image generation result across three
benchmark datasets- CUB-200-2011[9], Stanford Dogs[5] and UT Zappos50k[10].

1 Introduction

Recent developments in deep learning and generative adversarial networks(GAN) have made it
possible to generate realistic looking images of high resolution. The image generation techniques
generally come in two forms : i) Unconditional image generation – starting from a noise vector, the
generator generates an image [2]. ii) Conditional image generation – given a condition, the aim is to
generate an image adhering to some condition [6, 4, 11].

While a lot of work has been done in the domain of single-conditional image synthesis, the domain
of unsupervised multi-conditional image synthesis is relatively new. We aim to generate an image
conditioned on two inputs such that the generated image contains texture of the first and shape of the
second conditioned image.

2 Approach

Our work is based upon the recently released work FineGAN. The authors propose a GAN based
framework that learns to disentangle the background, shape and texture of an image in an unsupervised
manner. The network generates an image conditioned on input background, shape and texture codes.

Our pipeline takes in two images I1 and I2 as input and generates an output image(O). The pipeline
consists of three steps - i) Compute the texture code(T) that describes the first input image(I1), ii)
Compute the shape code(S) that describes the second input image(I2), and iii) Feed the computed
codes(T and S) as input to the pre-trained FineGAN network to get the desired output O.

To compute the codes(T and S), we take a trained FineGAN and iterate over all the possible com-
binations of shape and texture codes for 10 different noise vectors(different noise vector lead to
different orientations of the generated image). We denote as G the set of all such generated images.
To compute the texture code(T), we compute the nearest neighbour of I1 amongst G in the embedding
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space of ImageNet [7] pre-trained ResNet50 model [3]. The embedding space is defined by the
Global Average Pooling layer output of the ResNet50 model.

We repeat the same process for image I2 to compute the shape code(S) with the exception of using a
shape biased pre-trained ResNet50 network. The motivation for using a shape biased network stems
from [1], where the authors show that the ImageNet trained models are biased towards texture details
of image. The authors use stylized variants of the ImageNet dataset to train the network resulting in a
shape-biased network. We hypothesize that the shape biasness of the network would allow it to better
capture the shape details of the image, leading to correct identification of the shape code of an input
image. We verify both quantitatively and qualitatively this design choice in the following section.

3 Results and Discussions

Figure 1: cFineGAN results - columns 1-3 show results for CUB-200-2011, 4-6 for UT Zappos50k
and 7-9 for Stanford Dogs datasets respectively.

Our cFineGAN results over the three datasets - CUB-200-2011 [9], UT Zappos50k 3 [10] and Stanford
Dogs [5] are shown in figure 1. Additional results can be found in the Appendix section.

ResNet
Model

Accuracy
(%)

Standard
ResNet50 70.75

Shape-biased
ResNet50 86.90

Table 1: Quantitative
analysis of models for
shape code prediction of
generated images.

Figure 2: Nearest neighbour im-
age for standard and shape-biased
networks.

Figure 3: Qualitative comparison of
cFineGAN against the prior art.

To quantitatively evaluate the benefit of using a shape-biased pre-trained model for extracting the
shape code, we compute the nearest neighbour in the embedding space for each generated image in G.
We define accuracy as the fraction of times the query image and its nearest neighbour have the same
shape code. As the shape code of all the generated images is known, we can compute this metric.
Table 1 shows that the accuracy achieved by the shape-biased model is much better than that of a
standard model. Some qualitative results have been shown in figure 2.

We baseline our method against the approach mentioned in [8] where the authors train classifiers
over the domain of generated images to predict the shape and texture codes given image as an input.
Since the classifier is trained over the domain of generated images but is expected to predict the codes
of natural images during evaluation time, the huge domain shift encountered between train and test
settings lead to incorrect outputs. We show some qualitative comparisons against this baseline in
figure 3. As can be seen cFineGAN better captures the shape and texture details of input images.

3We trained our own FineGAN model over this dataset

2



References
[1] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-trained

cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint
arXiv:1811.12231, 2018.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1125–1134, 2017.

[5] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained image categorization:
Stanford dogs. 2015.

[6] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of computer
vision, 115(3):211–252, 2015.

[8] K. K. Singh, U. Ojha, and Y. J. Lee. Finegan: Unsupervised hierarchical disentanglement for fine-grained
object generation and discovery. arXiv preprint arXiv:1811.11155, 2018.

[9] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-ucsd birds 200.
2010.

[10] A. Yu and K. Grauman. Fine-grained visual comparisons with local learning. In Computer Vision and
Pattern Recognition (CVPR), Jun 2014.

[11] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages
2223–2232, 2017.

3



4 Appendix

4.1 Additional Results

We show additional results over the three datasets in Figures 4, 5 and 6.

Figure 4: Additional results over the CUB-200-2011 dataset.
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Figure 5: Additional results over the Stanford dogs dataset.
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Figure 6: Additional results over the UT Zappos50k dataset.
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